
INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Loops and Iteration

CS10003 PROGRAMMING AND DATA STRUCTURES

1

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 2

Looping Constructs

Types of Repeated Execution

Loop: Group of instructions that are executed repeatedly while some condition remains true.

How loops are controlled

Sentinel

Controlled

Counter Controlled

•1, 2, 3, 4, …

•…, 4, 3, 2, 1

Condition

Controlled

Counter Controlled Loop

Read 5 integers and display the

value of their sum.

counter ← 1, sum ← 0

counter < 6

sum ← sum + n

false

true

counter++

output sum

input n

Given an exam marks as input, display the appropriate message based on the rules below:

• If marks is greater than 49, display “PASS”, otherwise display “FAIL”

• However, for input outside the 0-100 range, display “WRONG INPUT” and prompt the user to

input again until a valid input is entered

Condition-controlled Loop

Condition-Controlled Loop

false

true

input m

m<0 || m>100

m>49 “PASS”

“FAIL”

true

false

“WRONG INPUT”

Condition-controlled loop with

its condition being tested at the

end

false

true

input m

m<0 || m>100

m>49 “PASS”

“FAIL”

true

false

“WRONG INPUT”

input m

Condition-controlled

loop with its condition being

tested first

Sentinel-Controlled Loop

Receive a number of positive integers and
display the summation and average of
these integers.

A negative or zero input indicates the end
of input process

Draw the flow chart.

while Statement

The “while” statement is used to carry out looping operations, in which a group of statements is executed

repeatedly, as long as some condition remains satisfied.

while (condition)

statement_to_repeat;

while (condition) {

statement_1;

...

statement_N;

}

Note:

The while-loop will not be entered if the loop-control expression evaluates to false (zero) even before the first

iteration.

The break statement can be used to come out of the while loop.

while:: Examples

int weight;

while (weight > 65) {

printf ("Go, exercise, ");

printf (“ … then come back. \n");

printf ("Enter your weight: ");

scanf ("%d", &weight);

}

Sum of first N natural numbers

START

READ N

SUM = 0

COUNT = 1

SUM = SUM + COUNT

COUNT = COUNT + 1

IS

COUNT > N? OUTPUT SUM

STOP

YESNO

int main () {

int N, count, sum;

scanf (“%d”, &N) ;

sum = 0; count = 1;

while (count <= N) {

sum = sum + count;

count = count + 1;

}

printf (“Sum = %d\n”, sum) ;

return 0;

}

Double your money

Suppose your Rs 10000 is earning interest at 1% per month. How many months until you double your money ?

my_money=10000.0;

n=0;

while (my_money < 20000.0) {

my_money = my_money * 1.01;

n++;

}

printf (“My money will double in %d months.\n”,n);

Maximum of inputs

printf (“Enter positive numbers to max, end with -1.0\n”);

max = 0.0; count = 0;

scanf(“%f”, &next);

while (next != 1.0) {

if (next > max) max = next;

count++;

scanf(“%f”, &next);

}

printf (“The maximum number is %f\n”, max) ;

Printing a 2-D Figure

How would you print the following diagram?

* * * * *

* * * * *

* * * * *
repeat 3 times

print a row of 5 stars

repeat 5 times

print *

Nested Loops

#define ROWS 3

#define COLS 5

...

row=1;

while (row <= ROWS) {

/* print a row of 5 *’s */

…

printf(“\n”);

row++;

}

while (col <= COLS) {

printf (“* “);

col++;

}

do-while statement

do statement while (expression)

main () {

int digit=0;

do

printf(“%d\n”,digit++);

while (digit <= 9) ;

}

statement

expression

F

T

The “for” statement is the most commonly used looping structure in C.

General syntax:

for (expr1; expr2; expr3) statement

expr1: initializes loop parameters

expr2: test condition, loop continues if this is satisfied

expr3: used to alter the value of the parameters after each iteration

statement: body of the loop

for Statement

Sum of first N natural numbers

int main () {

int N, count, sum;

scanf (“%d”, &N) ;

sum = 0;

count = 1;

while (count <= N) {

sum = sum + count;

count++;

}

printf (“Sum = %d\n”, sum) ;

return 0;

}

int main () {

int N, count, sum;

scanf (“%d”, &N) ;

sum = 0;

for (count=1; count <= N; count++)

sum = sum + count;

printf (“Sum = %d\n”, sum) ;

return 0;

}

2-D Figure

Print

* * * * *

* * * * *

* * * * *

#define ROWS 3

#define COLS 5

....

for (row=1; row<=ROWS; row++) {

for (col=1; col<=COLS; col++) {

printf(“*”);

}

printf(“\n”);

}

Another 2-D Figure

Print

*

* *

* * *

* * * *

* * * * *

#define ROWS 5

....

int row, col;

for (row=1; row<=ROWS; row++) {

for (col=1; col<=row; col++) {

printf(“* ”);

}

printf(“\n”);

}

Specifying “Infinite Loop”

while (1) {

statements

}

for (; ;)

{

statements

}

do {

statements

} while (1);

The break Statement

Break out of the loop { }

• can use with

• while

• do while

• for

• switch

• does not work with

• if

• else

Causes immediate exit from a while, do/while, for or switch structure.

Program execution continues with the first statement after the structure.

Example: Find smallest n such that n! exceeds 100

#include <stdio.h>

int main() {

int fact, i;

fact = 1; i = 1;

while (i<10) { /* run loop –break when fact >100*/

fact = fact * i;

if (fact > 100) {

printf ("Factorial of %d above 100", i);

break; /* break out of the while loop */

}

i ++ ;

}

}

24

Test if a number is prime or not

int main() {

int n, i=2;

double limit;

scanf (“%d”, &n);

limit = sqrt(n);

for (i = 2, i <= limit; i++) {

if (n % i == 0) {

printf (“%d is not a prime \n”, n);

break;

}

}

if (i > limit) printf (“%d is a prime \n”, n);

return 0;

}

25

Another Way

int main() {

int n, i = 2, flag = 0;

double limit;

scanf (“%d”, &n);

limit = sqrt(n);

while (i <= limit) {

if (n % i == 0) {

printf (“%d is not a prime \n”, n);

flag = 1; break;

}

i = i + 1;

}

if (flag == 0) printf (“%d is a prime \n”, n);

return 0;

}

The continue Statement

Skips the remaining statements in the body of a while, for or do/while structure.

• Proceeds with the next iteration of the loop.

while and do/while

• Loop-continuation test is evaluated immediately after the continue statement is executed.

for structure

• expression3 is evaluated, then expression2 is evaluated.

An example with “break” & “continue”

fact = 1; i = 1; /* a program segment to calculate 10 !

while (1) {

fact = fact * i;

i ++ ;

if (i<=10)

continue; /* not done yet ! Go to loop and perform next iteration*/

break;

}

28

Example with break and continue:
Add positive numbers until a 0 is typed, but ignore any negative numbers typed

int main() {

int sum = 0, next;

while (1) {

scanf(“%d”, &next);

if (next < 0) continue;

else if (next == 0) break;

sum = sum + next;

}

printf (“Sum = %d\n”, sum) ;

return 0;

}

10

-20

30

40

-5

10

0

Sum = 90

Output

29

Some Loop Pitfalls

while (sum <= NUM) ;

sum = sum+2;

for (i=0; i<=NUM; ++i);

sum = sum+i;

for (i=1; i!=10; i=i+2)

sum = sum+i;

double x;

for (x=0.0; x != 2.0; x=x+0.2)

printf(“%.18f\n”, x);

Some Examples

Example: Computing ex series up to N terms (1 + x + (x2 / 2!) + (x3 / 3!) + …)

START

READ X, N

TERM = 1

SUM = 0

COUNT = 1

SUM = SUM + TERM

TERM = TERM * X / COUNT

COUNT = COUNT + 1

IS
COUNT > N?

OUTPUT SUM

YES
NO

int main () {

float x, term, sum;

int n, count;

scanf (“%d”, &x) ;

scanf (“%d”, &n) ;

term = 1.0; sum = 0;

for (count = 1; count <= n; count++) {

sum += term;

term = x/count;

}

printf (“%f\n”, sum) ;

}

Computing ex up to 4 decimal places

int main () {

float x, term, sum;

int n, count;

scanf (“%d”, &x) ;

scanf (“%d”, &n) ;

term = 1.0; sum = 0;

for (count = 1; term>=0.0001; count++) {

sum += term;

term *= x/count;

}

printf (“%f\n”, sum) ;

}

Example: Decimal to binary conversion

#include <stdio.h>

main()

{

int dec;

scanf (“%d”, &dec);

do

{ printf (“%2d”, (dec % 2));

dec = dec / 2;

} while (dec != 0);

printf (“\n”);

}

In which order are the bits printed?

34

break and continue with nested loops

For nested loops, break and continue are matched with the nearest loops (for, while, do-while)

Example:

while (i < n) {

for (k=1; k < m; ++k) {

if (k % i == 0) break;

}

i = i + 1;

}

Breaks here

35

Example

int main()

{

int low, high, desired, i, flag = 0;

scanf(“%d %d %d”, &low, &high, &desired);

i = low;

while (i < high) {

for (j = i+1; j <= high; ++j) {
if (j % i == desired) {

flag = 1;
break;

}
}
if (flag == 1) break;
i = i + 1;

}
return 0;

}

Breaks here

Breaks here

36

The comma operator

◼ Separates expressions

◼ Syntax

expr-1, expr-2, …,expr-n

expr-1, expr-2,… are all expressions

◼ Is itself an expression, which evaluates to the value of the last expression in the sequence

◼ Since all but last expression values are discarded, not of much general use

◼ But useful in for loops, by using side effects of the expressions

37

Example

◼ We can give several expressions separated by commas in place of expr1 and expr3 in a for loop to do multiple

assignments for example

for (fact=1, i=1; i<=10;++ i)

fact = fact * i;

for (sum=0, i=1; i<=N; ++i)

sum = sum + i * i;

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 3
8

Practice Problems

Practice Problems (do each with both for and while loops separately)

1. Read in an integer N. Then print the sum of the squares of the first N natural numbers

2. Read in an integer N. Then read in N numbers and print their maximum and second maximum (do not use

arrays even if you know it)

3. Read in an integer N. Then read in N numbers and print the number of integers between 0 and 10 (including

both), between 11 and 20, and > 20. (do not use arrays even if you know it)

4. Repeat 3, but this time print the average of the numbers in each range.

5. Read in a positive integer N. If the user enters a negative integer or 0, print a message asking the user to enter

the integer again. When the user enters a positive integer N finally, find the sum of the logarithmic series

(loge(1+x)) upto the first N terms

6. Read in an integer N. Then read in integers, and find the sum of the first N positive integers read. Ignore any

negative integers or 0 read (so you may actually read in more than N integers, just find the sum with only the

positive integers and stop when N such positive integers are read)

7. Read in characters until the ‘\n’ character is typed. Count and print the number of lowercase letters, the

number of uppercase letters, and the number of digits entered.

39

Additional Examples

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 4
1

ISBN Numbers

Checking for Legal ISBN Numbers

An ISBN number must:

• Contain 10 symbols , D1 ,.., D10 where D1 is a checksum between 1 and 10.

• If D1 is 10, then it is represented as X.

• The sum:

10 * D10 + 9 * D9 + 8 * D8 + 7 * D7 + 6 * D6 + 5 * D5 + 4 * D4 + 3 * D3 + 2 * D2 + 1 * D1

should be divisible by 11

• Given digits 2 to 10, the correct 1st digit has to be computed such that the remainder of dividing the sum by

11 (unless the remainder is already 0)

10th 9th 8th 7th 6th 5th 4th 3rd 2nd 1st

D10 D9 D8 D7 D6 D5 D4 D3 D2 D1

Read the 9 digit integer and compute the weighted sum

#include <stdio.h>

int main(void) {

int isbn, i, digit, sum=0;

printf("Enter the first 9 digits of the ISBN Number:");

scanf("%d",&isbn);

// Compute the sum: 10 * D10 + 9 * D9 + … + 3 * D3 + 2 * D2

for (i=2; i<=10; i++) {

digit = isbn % 10 ;

isbn = isbn / 10 ; // Note the use of integer division

sum = i * digit ;

}

}

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 4
3

Compute and print the checksum digit

#include <stdio.h>

int main(void) {

int isbn, i, digit, sum=0;

char checksum;

printf("Enter the first 9 digits of the ISBN Number:");

scanf("%d",&isbn);

for (i=2; i<=10; i++) {

digit = isbn % 10; isbn = isbn / 10; sum = i * digit;

}

if (sum % 11 == 1) checksum = ‘X’;

else if (sum % 11 == 0) checksum = ‘0’;

else if checksum = '0‘ + 11 − (sum%11) ;

printf(“Checksum digit = %c\n”, checksum);

}

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 4
4

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 4
5

BISECTION METHOD FOR ROOT FINDING

A method for finding the root of a function

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 4
6

Observation: If the sign of f(a) and f(b) are different, then there is a root between a and b

In each iteration:

• Find the mid point, m, between a and b

• If f(a) and f(m) have opposite signs then revise b to m

• If f(b) and f(m) have opposite signs then revise a to m

Continue until desired accuracy is reached

Bisection Method for 4x3 – 3x2 + 2x – 5

int main(void)

{

double a, b, m;

printf("Enter initial left and right bounds:");

scanf("%lf %lf", &a, &b); // For simplicity, we will assume that the bounds are valid

while (to be explained)

{

m = (a + b) / 2;

if ((4*b*b*b – 3*b*b + 2*b – 5) * (4*m*m*m – 3*m*m + 2*m – 5) >= 0) b = m;

else a = m;

}

}

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 4
7

When to terminate?

int main(void)

{

double a, b, m, margin;

printf("Enter initial left and right bounds and the margin:");

scanf("%lf %lf%lf", &a, &b, &margin);

while ((b – a) > margin)

{

m = (a + b) / 2;

if ((4*b*b*b – 3*b*b + 2*b – 5) * (4*m*m*m – 3*m*m + 2*m – 5) >= 0) b = m;

else a = m;

}

}

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 4
8

Terminate after some iterations if it does not reach margin

int main(void)

{ double a, b, m, margin;

int bound;

printf("Enter initial left and right bounds , the margin, and iteration bound:");

scanf("%lf%lf %lf%d", &a, &b, &margin, &bound);

while (((b – a) > margin) && (bound > 0))

{ bound – – ;

m = (a + b) / 2;

if ((4*b*b*b – 3*b*b + 2*b – 5) * (4*m*m*m – 3*m*m + 2*m – 5) >= 0) b = m;

else a = m;

}

printf (“Root = %lf\n”, (a+b)/2);

}

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 4
9

